Self-learning simulation method for inverse nonlinear modeling of cyclic behavior of connections
نویسندگان
چکیده
This paper presents an improved self-learning simulation and its application to modeling of ‘cyclic’ behavior of the connections from the results of structural testing. Unlike other inverse modeling approaches such as parameter optimization methods, the proposed method requires no prior knowledge about the behavior and model. It can extract the cyclic connection models by imposing experimental measurements to the dual finite element models as boundary conditions. A new algorithmic tangent formulation during the self-learning simulation has been proposed to improve performances of the self-learning simulation. Moreover, a new neural network (NN) based hysteretic material model is utilized to expedite learning of the cyclic behavior and it is integrated into the improved self-learning simulation method. To guide a practical implementation of the self-learning simulation, numerical procedures are also presented in detail. Using both synthetic and actual experimental data, the self-learning simulation method has proven to be a reliable method to extract nonlinear cyclic models of the local connections from the global response of the framed structures. 2008 Elsevier B.V. All rights reserved.
منابع مشابه
Predicting Low Cycle Fatigue Life through Simulation of Crack in Cover Plate Welded Beam to Column Connections
This paper presents a low cycle fatigue life curve by simulating a crack in a cover plate welded moment connection. Initiation of ductile fracture in steel is controlled by growth and coalescence of micro-voids. This research used a numerical method using finite element modeling and simulation of ductile crack initiation by a micromechanical model. Therefore, a finite element model of a cover p...
متن کاملThe Effects of Internal and External Stiffeners on Hysteretic Behavior of Steel Beam to CFT Column Connections
This study focuses on performance of H-shaped steel beams to CFT column rigid connections. To this end, the effects of internal and external stiffeners on hysteretic behavior of connections were studied. Comparative numerical analyses carried out on eight different connections. To this end finite element models were prepared using ANSYS and nonlinear cyclic analyses carried out. Results of this...
متن کاملDynamic modeling and nonlinear vibration simulation of piezoelectric micro-beam in self sensing mode of atomic force microscope
Nowadays, atomic force microscope is considered as a useful tool in the determination of intermolecular forces and surface topography with the resolution of nanometers. In this kind of microscope, micro cantilever is considered as the heart of the microscope and is used as a measuring tool. This paper is aimed towards investigating the behavior of a piezoelectric micro cantilever with a triang...
متن کاملPost-Tensioned Steel Connections Self-Centering Behavior Using the Finite Element Method
Due to lack of the proper and well behavior of steel moment-resisting connections subjected to the great and major earthquakes, excessive researches have been conducted to mitigate the damages on the primary elements and connections. Therefore, elimination of residual drift and increasing the plastic rotation capacity for the connectors in the panel zone are required. The main purpose of this s...
متن کاملNumerical Analysis of Cyclic Behavior of Beam-To-Column Bolted Connections in Steel Frames
This article considers the seismic behavior of beam-to-column joints in steel frames for different bolt arrangements by using of finite element modeling. As the most important beam-to-column joint type, the beam-to-column joints with end-plate is chosen for the analysis. Four different specimens have been analyzed. These models had some differences such as bolt arrangement and the presence or a...
متن کامل